Advanced Heat Transfer and Thermal Storage Fluids

Dan Blake, Luc Moens, Dan Rudnicki, Mary Jane Hale, Professor Ramana Reddy, and Greg Glatzmaier

Goals and Objectives

- The goal is to find a heat transfer and thermal storage fluid with a usable liquid range from near 0 to above 400 °C that will meet the cost and performance requirements of parabolic trough systems.
- The near term objective (FY03) is to identify a fluid with the potential for service up to 300 °C.

Project to Date

- Synthesis and thermal stability of imidazolium salts and identification of other possible salts NREL FY2000-present
- Physical properties, materials compatibility, and extended thermal stability testing — The University of Alabama FY2001-present
- Production Process and Cost Study Peak Design Subcontract FY02

The Challenge for A New Fluid

- Low freezing point <25 °C
- Low vapor pressure < 1 atm at T_{max}
- Low cost $< \sim $4.50/Kg$
- Thermal stability at > 400 °C
- Compatible with alloys and materials used in solar plants
- Other physical properties compatible with the solar application

Imidazolium Salts

Table 1. Cost of reactants for synthesis of EmimBF₄

Reactant	Cost (\$/lb)	Cost per lb of EmimBF ₄
Glyoxal (50%) (ethylene glycol)	1.00 (0.38)	. 73 (0.12)
Formaldehyde	.21	.03
Ammonia	.10	.01
Methylamine	.73	.11
Ethylchloride (ethylene)	2.00 (0.23)	. 64 (0.03)
Tetrafluoroboric acid (50%)	.65	.58

Process Changes to reduce the cost of an imidazolium salt Peak Design (2002)

$$\begin{array}{c} & & & \\ & &$$

Production process for ethylmethylimidazolium Tetrafluoroborate (process 3)

Table 3. Economic assumptions for the discount cash flow analysis Peak Designs (2002)

Economic Factor

Internal Rate of Return

Depreciation

Recovery Period

Plant Life

Construction Period

Working Capital

Federal Tax

State Tax

Salvage Value

Debt/Equity Ratio

Plant size

Annual hours of operation

Labor

Maintenance

Electricity

Reaction yields

<u>Value</u>

15%

Tab. 4

11 years

21 years

1 year

15% of total capital

40% of net income

5% of net income

10% of fixed capital

0/100

10,000,000 kg/yr

8,322 (95%)

\$50/hr (loaded including supervision)

7% of fixed capital

\$0.06/kWhr

100% (except glyoxal synthesis: 75%)

Table 7. Required costs for EmimBF₄

<u>Process</u>	Reactant costs	Other operating	<u>Capital</u>	TotalCost (\$/kg)
1	4.75	0.24	0.37	5.36
2	3.30	0.25	0.37	3.92
3	2.02	0.25	0.39	2.66

Table 8. Product cost dependence on plant size and internal rate of return

Process	Plant Size (10 ⁶ kg/yr)	Product Cost (\$/kg)		
1	5	5.57		
	10	5.36		
	50	<u>5.16</u>		
2	5	4.16		
	10	3.92		
	50	3.70		
3	5	2.90		
	10	2.66		
	50	2.43		
Process	IRR (%)	Product Cost (\$/kg)		
1	10	5.24		
	15	5.36		
	25	<u>5.62</u>		
2	10	3.80		
	15	3.92		
	25	4.19		
3	10	2.53		
	15	2.66		
	25	2.92		

Table 9. Cost of EmimBF₄ as a function of reaction yield (process 3)

Reaction Yields*	Total cost (\$/kg)
100%	\$2.66
95	2.86
90	3.11
80	3.85

^{*}Glyoxal yield is held at 75% in all cases

Summary and Conclusions

- Cost goals can be met with an organic salt
- When a viable candidate is identified the production process must be optimized

Longer term stability test of [C₈mim]PF₆

Overall Observations

- We may have pushed the upper temperature limit of imidazolium salts as high as possible with anions – Further improvements may require changes in the imidazolium ring substituents
- A 300 °C salt appears to be within reach
- We will begin some work on alternative types of organic salts and mixtures

Corrosivity of Ionic Liquids

Experimental Methods

- ◆ Tafel extrapolation method was used to determine corrosion current density and calculate corrosion rates
- Potentiodynamic polarization curves to analyze corrosion behavior of the alloys in ionic liquids
- Experiments were performed at room temperature
- Alloys tested:
 - 1018 carbon steel
 - 316 stainless steel
 - gray cast iron

Typical Tafel Plot

Uniform Corrosion Rates of Solar Materials in Ionic Liquids

Ionic liquid	Corrosion Rate at 25°C, in μm/yr			
	SS 316	1018 Carbon Steel	Gray Cast Iron	
[C ₄ mim]Cl	1.3 LC	3.2 LC	8.9 LC	
[C ₈ mim]PF ₆	1.2	5.6	2.6	
[C ₆ mim]PF ₆	0.4	13.0	13.0	
[C ₄ mim][Tf ₂ N]	1.1	11.0	20.0	

LC = localized corrosion

Conclusions

- Materials used in solar plant technology such as 316 stainless steel alloy, 1018 carbon steel and gray cast iron were found to be outstanding in corrosion resistance (corrosion rates: <20 μm/yr) against ionic liquids at RT</p>
- ◆ Localized corrosion was observed on the surface of the materials exposed to [C₄mim]Cl ionic liquid
- ◆ The potentiodynamic tests showed in most cases an active/passive corrosion behavior. However, the ionic liquid [C₄mim]Cl prevented the formation of stable passive films

Heat Capacities

Properties of Heat Transfer Fluids at 25°C

Liquid	Melting point, °C	Density g/ml	Viscosity cPs	Cp Jg ^{−1} K ⁻¹	Cp, v Jcm ⁻³ K ⁻¹
Dowtherm HT	NA	1.01	953	1.42	1.41
Thermal oil	NA	0.89	1.9	1.69	1.90
[C ₄ mim]Cl	57.1	1	NA	1.58	>1.58
[C ₂ mim][BF ₄]	5.8	1.20	34	1.12	1.34
[C ₂ mim][PF ₆]	60.5	1.10	NA	1.00	1.10
[C ₄ mim][PF ₆]	6.5	1.37	389	1.14	1.56
[C ₆ mim][PF ₆]	-80(T _g)	1.30	688	1.34	1.75
[C ₄ mim][Tf ₂ N]	-5.1	1.44	53	1.05	1.50

A comparison of Volumetric Heat Capacity Performance

Viscosities of Ionic Liquids

Viscosities of Ionic Liquids

C₄mimCl at 300K

C₆mimCl at 300K

Long Term Thermal Stability of IL

Evaluation of Long-term Thermal Stability

- Experimental Procedure :
 - Hold the ionic liquid samples at a fixed temperature for 20 hours,
 - Then raise the temperature to a higher level and holding for another 20 hours until significant weight changes are observed.

Weight Changes of [C₄mim][Tf₂N] as a Function of Time at Different Temperatures

Weight Changes of $[C_6 mim]PF_6$ as a Function of Time at Different Temperatures

Weight Changes of [C₈mim]PF₆ as a Function of Time at Different Temperatures

Influence of ANION

Influence of ANION

Influence of CATION structure

Ramp 20C/min and Isothermal decomposition over 120 min

Schematic of NREL's MBMS Sampling System

Thermal Decomposition Pathways

Demethylation

Hofmann Type Elimination

MBMS study of [EtMeIm][BF 4]

$$m/z = 82$$

$$m/z = 96$$

$$m/z = 110$$

Proposed thermal events

- 1) HF liberation at high T
- 2) de-alkylation of quat. amine salt

One-Step Synthesis of Ionic Liquids

- * avoids chloride salts as intermediates!
- * 'adjustment' of melting point and thermal stability

Conclusions

- Imidazolium salts offer flexibility in 'designing' melting point and thermal stability
- PF₆ salts are 'easy' to prepare and purify, and are probably least expensive
- Onset T for thermal decomposition must be determined carefully. Kinetic data are needed for evaluation of longterm T stability
- Reactivity of ANION has strong influence on T stability
- Structure of imidazolium CATION appears to have less influence, but more work is needed
- Influence of IMPURITIES on T stability of ionic liquids is not completely understood and is case-dependent.
- Intermediate chloride salts in synthetic route must be avoided due to residues in final ionic fluid (corrosion)
- One-Step Synthesis of ionic liquid mixtures:
 - a) no chloride residues
 - b) lower 'complexity' of synthetic process for ionic fluids
 - c) possibly lower production cost
 - d) synthetic methods must be optimized
- Can alternative ionic liquids be developed other than the imidazolium salts?